Strong, conductive carbon nanotube fibers as efficient hole collectors
نویسندگان
چکیده
We present the photovoltaic properties of heterojunctions made from single-walled carbon nanotube (SWNT) fibers and n-type silicon wafers. The use of the opaque SWNT fiber allows photo-generated holes to transport along the axis direction of the fiber. The heterojunction solar cells show conversion efficiencies of up to 3.1% (actual) and 10.6% (nominal) at AM1.5 condition. In addition, the use of strong, environmentally benign carbon nanotube fibers provides excellent structural stability of the photovoltaic devices.
منابع مشابه
Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes
Time-resolved fluorescence measurements of single-walled carbon nanotubes (SWNTs) reveal rapid electron-hole pair annihilation when multiple electron-hole pairs are present in a nanotube. The process can be understood as Auger recombination with a rate of ,1 ps−1 for just two electron-hole pairs in a 380-nm long SWNT. This efficient nonradiative recombination reflects the strong carrier-carrier...
متن کاملHybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics.
Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Th...
متن کاملConductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose.
Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a she...
متن کاملThree-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly co...
متن کاملExtremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes.
We observed highly efficient generation of electron-hole pairs due to impact excitation in single-walled carbon nanotube p-n junction photodiodes. Optical excitation into the second electronic subband E22 leads to striking photocurrent steps in the device I-V(SD) characteristics that occur at voltage intervals of the band-gap energy E(GAP)/e. Spatially and spectrally resolved photocurrent combi...
متن کامل